Label-free oxygen-metabolic photoacoustic microscopy in vivo.

نویسندگان

  • Junjie Yao
  • Konstantin I Maslov
  • Yu Zhang
  • Younan Xia
  • Lihong V Wang
چکیده

Almost all diseases, especially cancer and diabetes, manifest abnormal oxygen metabolism. Accurately measuring the metabolic rate of oxygen (MRO(2)) can be helpful for fundamental pathophysiological studies, and even early diagnosis and treatment of disease. Current techniques either lack high resolution or rely on exogenous contrast. Here, we propose label-free metabolic photoacoustic microscopy (mPAM) with small vessel resolution to noninvasively quantify MRO(2) in vivo in absolute units. mPAM is the unique modality for simultaneously imaging all five anatomical, chemical, and fluid-dynamic parameters required for such quantification: tissue volume, vessel cross-section, concentration of hemoglobin, oxygen saturation of hemoglobin, and blood flow speed. Hyperthermia, cryotherapy, melanoma, and glioblastoma were longitudinally imaged in vivo. Counterintuitively, increased MRO(2) does not necessarily cause hypoxia or increase oxygen extraction. In fact, early-stage cancer was found to be hyperoxic despite hypermetabolism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prospects of photoacoustic tomography.

Commercially available high-resolution three-dimensional optical imaging modalities-including confocal microscopy, two-photon microscopy, and optical coherence tomography-have fundamentally impacted biomedicine. Unfortunately, such tools cannot penetrate biological tissue deeper than the optical transport mean free path (approximately 1 mm in the skin). Photoacoustic tomography, which combines ...

متن کامل

In vivo sub-femtoliter resolution photoacoustic microscopy with higher frame rates

Microscopy based on non-fluorescent absorption dye staining is widely used in various fields of biomedicine for 400 years. Unlike its fluorescent counterpart, non-fluorescent absorption microscopy lacks proper methodologies to realize its in vivo applications with a sub-femtoliter 3D resolution. Regardless of the most advanced high-resolution photoacoustic microscopy, sub-femtoliter spatial res...

متن کامل

PACM: Photoacoustic Computed Microscopy

Photoacoustic Computed Microscopy (PACM) is a new label-free microscopic method that combines current photoacoustic microscopy technique with a modelbased inverse reconstruction algorithm to provide functional images of microvasculature. This article demonstrates its in vivo imaging ability of quantifying important functional parameters at the small vessel level in a rodent model. This new tech...

متن کامل

Single-cell label-free photoacoustic flowoxigraphy in vivo.

Label-free functional imaging of single red blood cells (RBCs) in vivo holds the key to uncovering the fundamental mechanism of oxygen metabolism in cells. To this end, we developed single-RBC photoacoustic flowoxigraphy (FOG), which can image oxygen delivery from single flowing RBCs in vivo with millisecond-scale temporal resolution and micrometer-scale spatial resolution. Using intrinsic opti...

متن کامل

Label-free imaging of zebrafish larvae in vivo by photoacoustic microscopy

Zebrafish play an important role in biological and biomedical research. Traditional in vivo imaging methods for studying zebrafish larvae primarily require fluorescence labeling. In this work, relying on tissue intrinsic optical absorption contrast, we acquired high resolution label-free 3D images of zebrafish larvae by using photoacoustic microscopy (PAM) in vivo. The spatial resolution reache...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 16 7  شماره 

صفحات  -

تاریخ انتشار 2011